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We present a very exact numerical technique for solving 1D Euler equations coupled with 
the transport equations for the entropy and the chemical abundances with or without shock 
formation. Two moving grids are used before and after the shock formation. Quantities are 
expanded on both sides of the matching point in Chebychev polynomials series, After the 
shock is formed, Rankine-Hugoniot conditions are used to determine the velocity of the shock 
and the matching conditions across the shock. Typical results are presented. ( 1991 Academic 

Press. Inc. 

1. INTRODUCTION 

One of the most important problems in numerical hydrodynamics is the handling 
of shock waves. This trouble arises in many astrophysical situations of interest, 
especially in simulations of gravitational collapse. 

The numerical codes cannot handle shocks in a straightforward way. The 
existence of a shock needs a specific numerical treatment. Various methods have 
been developped by several authors. The most widespread are: 

- finite difference codes with artificial viscocity [ 1 ] 
- pseudo-spectral codes with natural viscocity [24] 
- pseudo-spectral codes with filtering [5-S] 
- Riemann solver codes [9-121. 

The first two methods introduce dissipation and diffusivity of the momentum in 
an explicit way. Artificial viscocity, which can be roughly seen as a local moditica- 
tion of the equation of state is introduced in such a way that contiguous shells of 
matter do not cross each other. Pseudo-spectral codes with natural viscosity solve 
the Navier-Stokes equations with some viscous coefficient v(t, x) which, in most 
practical applications, is orders of magnitude larger than the actual physical 
viscosity. Pseudo-spectral codes using filtering in order to smooth the high 
gradients and, therefore, to attenuate the Gibbs phenomenum introduce hidden 
diffusivity. 
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The Riemann solver method solves the Riemann problem at each time step on 
each point of the numerical grid and then allows us to treat the shock exactly as 
a true discontinuity using the Rankine-Hugoniot conditions to match the solutions 
through the shock. 

We present in this paper a pseudo-spectral numerical method which is able to 
treat exactly the formation and the tracking of a shock in 1D plane geometry. The 
method, which is described in Section 2, is general enough to solve problems in 
which chemical abundances must be taken into account and in which entropy 
production has to be considered. Our method allows us to handle shock formation 
and shock tracking without any kind of explicit or implicit diffusivity. This method 
can be seen as a generalization of a previous method which handles discontinuity 
formation and tracking in the Burger equation [ 133. The numerical scheme is 
presented in Section 3. In Section 4, numerical results obtained in the case of a 
perfect gas are shown. 

2. EQUATIONS OF MOTION 

Consider a fluid for which the equation of states is 

p = p(P, s, xi), (2.1) 

where P is the pressure, p is the mass density, s is the entropy per baryon, and Xi 
are the chemical abundances (if any). The equations of motion can be written in the 
following Eulerian form: 

ap aP0 PV -= 
at -Z-“T 
av av i ap F _ -fJ------- 
at- ax p ax p 
as as 
at- ax - -v-+zc, 

ax. L- ax, 
at - -v~+&" 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where x is the spatial variable, n is an integer defining the geometry (n = 0, 1,2 
represents plane, cylindrical, or spherical geometry, respectively), F is a body force, 
and where C, and Z, are sources, if any. 

In the general case, with given initial and appropriate boundary conditions, the 
previous system of equations develops shocks. The spectral methods can be roughly 
seen as an infinite order (in space) numerical scheme when the quantities are of 
P-class. However, if the quantities are of V-class, spectral methods give rise to 
a (p + 1)-order scheme (see, e.g., [ 141). In the problem in which we are interested, 
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it is therefore impossible to naively use spectral methods, because the Gibbs 
phenomenon generated by the discontinuities of the dynamical quantities at the 
shock location would become so important that accuracy and convergence of the 
spectral approximation would be completely lost. 

However, it is to be noticed that all the quantities are piece-wise F-class, so 
that spectral methods lead to excellent numerical approximation of the solution on 
each side of the shock. Bearing in mind the previous remark and the fact that 
spectral methods are amenable to matching problems, we will introduce separate 
numerical grids on each side of the shock. 

A convenient way to proceed is to rewrite Eqs. (2.2)-(2.5) as transport equations 
along the characteristics of the problem, namely, 

where c is the sound velocity defined as 

ap 
"==p &,' 

(2.6) 

(2.7) 

(2.9) 

Note that the equations for s and Xi are already written as transport equations 
along gO. Introducing the two quantities 

I’ = v f N(p, s, X,), (2.10) 

where N is the thermodynamic variable 

the equations of evolution for p and v become equivalent to the following transport 
equations for I’ along the characteristics %?+ and %- : 

(2.12) 
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It is to be noted that, in the particular case of isoentropic flow (P = P(p), as/ax = 0, 
and i3X,/ax = 0), the quantities I’ reduces to the usual Riemann invariants, 

I PdP 
Z’=v& - 

PC 
(2.13) 

which, in the more particular case of pure hydrodynamics (F= 0) in plane geometry 
(n = 0), are constants along the characteristics %T* (as can be easily seen from 
Eq. (2.12)). 

3. GRID SPLITTING 

In this section, and in what follows, we will consider for simplicity cases where 
at most only one shock is present (as is the case in a spherical supernova). 

Let us assume that the spatial variable x lies in the range [a, b]. As suggested 
in the previous section, we will introduce two moving numerical grids, [a, a(t)] and 
[cc(t), b] such that, when a shock is present, a(t) is the space co-ordinate of the 
shock. Using Chebychev polynomial expansions which are defined on [ - 1, + 11, 
we map both the intervals [a, a(r)] and [a(t), b] onto [ - 1, + l] by means of the 
following transformations: 

xc(t) = 
2x-a-c@)~ 

a(t)-a ’ x E C4 dt)l, 

x,(t) = 
2x - b - a(t). 

b-or(t) ’ XE [a, a(t 
(3.1) 

Under the above transformations, the differential operators a/at and a/ax become 

a 2 a ---+-- 
ax a-aax, 

for x E [a, a(t)], and 

;-;+&-&- l)w& 
a 2 a -+-- 
ax b-aax, 

for XE [a(t), b]. 
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We are then led to solve two systems of equations (8) and (q): 

as: -= 
at -(2(v,+e,)-d(x,+l))-&$ 

I 

a9; -= 
at -(2(u,-c,)-&(x,+1))& s 

’ / 

+ 

a4+ 
L= -(2(L’.+c,)-4x,-l))$-$$ at r 

+ 

a4p 
A= -(2(v,-c,)-d(x,- 1),&S at r 

as, 2 
b - M ax, + -Q 

axir at= -(2v,-ci(x,- l))&$.Z,, 
r 

(3.2) 

with appropriate boundary conditions on a and a(t) for (8) and on or(t) and b 
for ($). 

3.1. Pre-shock Treatment 

When no shock is present, every quantity is continuous and a may be an 
arbitrary function of time under the condition t((tshock) = x,h&. However, from a 
numerical point of view, it is convenient, but not necessary, that the relative 
velocity of the fluid with respect to the grid on x= a(t) is subsonic, i.e., 
Ici(t)J < c(cr(t)). The method we recommend will be described in the following 
section. 
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The problem becomes well-posed once initial conditions and appropriate 
boundary conditions on a, a(t), and b are given. The initial conditions are arbitrary. 
However, the way in which the boundary conditions are introduced is strongly con- 
strained by the directions of the three characteristics Woo, V,, and GK issued from 
a, a(t), and b. Let us consider for simplicity the case where IuI < c on a and b. The 
diagram of the characteristics is shown on Fig. la. It follows that on the left side 
(x E Co, a(l) 

One boundary condition must be imposed on s and Xi on x = a (x, = - 1) if 
and only if go(a) is ingoing (u(a)>O). 

One boundary condition must be imposed on s and Xi on x = a(t) (x1 = .t 1) 
if and only if We(a) is ingoing (u(a) < oi). 

One boundary condition must be imposed on I+ on x = a (x1 = - 1). One 
boundary condition must be imposed on I- on x = a (x, = + 1). 

X a Q b 

b \ 
\ 

T t - 
a 

b 

FIG. 1. Shape of the characteristics FO, ‘%+ , and V_ issued from the points a, a and b (a) when no 
shock is present; (b) the relative position of the tangent to the shock path with respect to the charac- 
teristics when a shock is present on a. 
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Remember that, under the above assumptions, %?+(a) is always ingoing and 
G??+(m) is always outgoing, and, in the same way, K(a) is always outgoing and 
%:-(a) is always ingoing. 

Similar rules apply to the way in which boundary conditions are treated for x, 
namely x E [cc(t), 61. 

The values of the boundary conditions on x= a and x= b are arbitrary. 
However, for x = a(t), the boundary conditions on x = a(t) for y;’ and Y: have to 
be determined in such a way that the global solution is continuous on u(t), i.e., 

s/7 xi,, z~~l~~I.r~=+l=Sr~ xi,Trr+T ‘L I.r,=-I’ (3.3) 

Note that the above considerations can be generalised to the case Iv(a)\ > c(a) 
or/and [u(b)1 > c(b). 

3.2. Post-shock Treatment 

Once the shock is formed, the way in which boundary conditions are treated 
does not change. But, since the relative velocity of the fluid with respect to the 
velocity of the shock is supersonic on one side of the shock and subsonic on the 
other side, the matching conditions on x = cl(t) are different. We recall that now 
ix(t) is the position of the shock and i(t) is its velocity. 

Let us assume without loss of generality that the supersonic region is the right 
side of the shock, that is, 

and 
Iu(a-)-&I <C(C). (3.4) 

Then there is no ingoing characteristic issued from CI+ into the right side of the 
shock (see Fig. lb). Consequently, the system of equations $Y must be integrated 
without any boundary condition on x = c( + (xr = - 1). 

On the other hand, the system of equations Y; must be integrated with boundary 
conditions on x = c(- (x,= + 1) f or sl, Xi,, and Z;. Non-accumulation of energy, 
mass, chemical abundances, and momentum on the shock implies generalized 
Rankine-Hugoniot relations. These relations allow us to determine the values of the 
boundary conditions for sI, Xi/, and Z; and to determine the velocity of the shock, 
namely a(t). 

4. DETERMINATION OF !I 

As explained in the preceeding section, before a shock is formed, cc(t) can be any 
arbitrary function of time under the conditions 

(4.1) 
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where Xshock is the space co-ordinate of the shock, and where tshock is the time of 
the birth of the shock. 

A shock forms when and where (%?+, K) leaves off being an admissible coor- 
dinate system, that is, when and where neighbouring characteristics of the same 
kind (U, or %‘-) intersect each other. Consequently, at each time t, it is possible 
in principle to determine from the knowledge of all the quantities the shape of the 
characteristics, and then tshock and xShock. 

The above properties are used to compute et(t). At each time-step t”, for each 
couple of sampling points (xi, xi+ ,), we solve the system of equations in x,? 
and t,? 

x,+ -xi = (U(Xi, tJ) f C(Xi, tJ))(t’ - t”) 

x: - x, + I = (4x, + I, t”) f c(x, + 1, tJ))(t,* - t”), i=l , . . . . N- 1, 
(4.2) 

where N is the number of grid points. 
The solution of this system gives a set of 2(N- 1) points P,?. Among the points 

PI+ (t ,?, x,? ) satisfying 

t’ 3 tJ, (4.3) 

we choose the point C(t,, x0) such that 

to = Min(t: }. (4.4) 

The co-ordinates of this point give a forecast of the time and the position of the 
shock’s birth. Note that this method would give the exact value of tshock and 

A 

t 
shock 

------------ 

a1t ‘1 
z 

Xshock 

FIG. 2. Geometrical prediction of the two-position of the shock in the space (1, x) and computation 
at the time rJ of 8. 
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X shock ( tshock ) when xi-x,+, goes to zero and when u and c are constant along the 
characteristics; c( is then integrated forward in time by means of 

4t J+‘/2)=C((tJ~‘i2)+0i(tJ)dt, (4.5 1 

where 

&( tJ) = 
xg - a( tJ) 

t,-tJ . (4.6) 

Figure 2 shows how & is computed. 
At the first step, cc(O) is chosen in such a way that a(t) is always (t d tshock) inside 

the influence cone issued from (tshock, X,r,,,&). 
Note that this method gives an accuracy increasing with time for the evaluation 

of (tshock2 Xshock) because when &hock - tJ becomes smaller and smaller, then the 
afftne approximation (4.2) becomes, of course, better and better. 

5. NUMERICAL SCHEME 

We want to emphasise that we perform numerical integration of the coupled 
systems Y; and Y: along the co-ordinates (x,, t) and (x,, t), respectively. Numerical 
integration along the characteristics %7+ and VP cannot be used when a shock 
happens because the co-ordinate system (U, , %L ) becomes singular. 

We use Chebychev polynomial expansions to approximate physical quantities. 
We recall that this approximation gives rise to a great accuracy in the computa- 
tional of spatial derivatives, allows a fast algorithm, and is well suited to treat non- 
periodic boundary condition problems. Moreover, the canonical numerical grid 
associated with Chebychev polynomials is oncentrated near the boundary of the 
interval (dx cc l/N*, where N is the number of degrees of freedom) which is useful 
for approximating functions that are stiff near the boundaries. See, for instance, 
Gottlieb and Orszag [ 141 or Canuto et al. [ 151. 

5.1. Integration Forward in Time 

A second-order temporal numerical scheme is used. The numerical integration is 
performed in a semi-implicit way in order to avoid the Courent condition which 
can become very severe near the boundaries because of the high density of the 
sampling points. We have to solve transport equations for which the general form 
is 

af af 
at- - - W(t, x, f) - + Sourcef ax 
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The numerical temporal scheme is 

f J+‘=fJ+(&x (4+‘i’+c,x+c2)~ 
i 

--f(C,X+C2)a$;’ --~(c,x+c2)~+Source;t1/2 , 
I 

(5.2) 

where superscript J, J+ l/2, and J+ 1 refer to times t = tJ, tJ+ Ii2 = tJ + dtj2, and 
tJfl = tJ+ dt. The quantities computed at the time tJ+ ‘I2 are evaluated by 
extrapolation of their values at the times r-l and tJ. The coefficients c1 (t) and 
c2 (t) are determined in such a way that w - cl x - c2 vanishes at the boundaries at 
the time tJ. 

The previous equation written in the Chebychev representation reads 

where 7, and & are the coefficients of the Chebychev expansion off and of all the 
quantities computed at the time tJ+‘12 and where 9[,,, are the matrix coefficients of 
the operator (ci x + c2) a/ax. Note that the solution of the above algebraic system 
is easily obtained, because the matrix 9 - 9 can be simply reduced to a tridiagonal 
matrix (see, e.g., [2, 33). 

In the case of a system of A4 coupled partial differential equations, the above 
algebraic system becomes a system YNX ,,,, of N x M coupled equations, where 
N is the number of degrees of freedom. However, if the values of the boundary 
conditions are known at the time tJ+ i for each quantity, it can be seen from the 
numerical scheme used, (5.2), that the system YNX ,,, reduces to A4 decoupled 
systems of N equations. 

5.2. Boundary Condition Problem 

The determination of the value of the boundary condition which has to be 
applied to some quantity Q at the time tJf ’ can be seen as a viscious circle. Con- 
sider, for instance, the problem of finding the boundary values of ST and Y; on 
the matching point c1 in the simple case o(t, a) = u, and u(t, 6) = vb (Ju,I < c(a) and 
Iub < c(b)) when no shock is present. 

The previous boundary conditions read 

~:(-1)+Y,(-1)=2YU (5.4) 

9:(+1)+9,(+1)=2u, (5.5) 

Y:(+l)=X;(-l) (5.6) 

X1-(+1)=9,-(-1). (5.7) 
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Taking into account that the integration in time is performed simultaneously on the 
left and on the right numerical grids it appears that it is not possible to determine 
the values of 9 + and 9- at the boundaries at the time tJ+ i. Indeed, the boundary 
value of Y+ at the time tJf ’ depends on the value of F at the time tJfl and vice 
versa. Note that the algebraic system (5.3) can be generalised in a straightforward 
way for solving A4 (M> 1) equations. In this case, the problem of the boundary 
values disappears, but the matrix 9 -9 becomes a Mx N squared matrix. This 
method has been successfully used for the resolution of the 1D Burger equation 
with viscosity on two or three moving grids by Macaraeg and Street [4] but 
becomes prohibitive and cumbersome to code when M> 1. 

Noted that Euler equations are hyperbolic, and, consequently, the signal velocity 
is finite (unlike the Navier-Stokes equations for which the signal velocity is 
infinite). We use this property to solve the boundary condition problem in the 
following way. 

We first perform a numerical integration for 4: on the left side with an arbitrary 
boundary condition on x = a which leads to a provisional solution Y:,, say. 
Note that, because of the hyperbolicity of the equations, the boundary condition 
influences the solution only on the interval [a, (u + c) dt] and, consequently, S:, is 
the exact value of 9: at the time tJ+’ on the interval [(v + c) dt, a]. The value at 
9; (IX) and the matching condition on tl give the desired boundary condition for 
the numerical integration of 9;‘. The boundary condition u(t, b) = ub with the value 
of Y,+(h) at the time tJ+ ’ gives the expected boundary condition on x = b for 9;. 
After the integration of Y,, we use the matching condition on a and the value 
S,(U) at the time tJ+’ to determine the value of the boundary condition requested 
for the integration of .a;. Now, we can determine the exact value of the boundary 
condition on x = a for 9: by means of the given boundary condition u(t, a) = u, 
and of the value of Y;(a) at the time tJf ‘, and, consequently, integrate 9:. 

6. NUMERICAL RESULTS 

In this section we present a numerical simulation of a shock formation and shock 
propagation for a perfect gas in plane geometry. The equation of state reads 

P(p, s) = espy, (6.1) 

where y = $ and s is the entropy per barion which is defined within an additive 
constant. We choose the initial conditions 

s(x, 0) = 0, 

p(x, 0) = e-4x2 + 0.2, 

u( x, 0) = 0, 

(6.2) 

(6.3) 

(6.4) 
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with the boundary conditions 

o(a, t) = u(b, t) = 0, 

where x lies in the range [0,2]. 

(6.5) 

We present the results of a calculation performed with 2 x 65 grid points. The 
time step is constant in time and is chosen in such a way that the error on the solu- 
tion is acceptable (namely 50 time steps until the shock forms). We want to 

emphasise that the time step is determined by a precision criterion and not by 
numerical stability considerations. The CPU time, which is proportional to the 
number of degrees of freedom, is in this case (2 x 65 grid points) 0.29 s per time-step 
on a VAX-8600 in double precision. The entire calculation was performed within 
40 s of CPU time. 

Figures 3aA represent density profiles and corresponding velocity fields at suc- 
cessive instants: at the beginning (Fig. 3a) of the evolution; when the density and 
velocity gradients become steeper and steeper (Fig. 3b); when the shock forms 
(Fig. 3~); and, finally, when the shock propagates through the box until it reaches 
the wall (Fig. 3d). The sticks at the bottom of the figures show the corresponding 
positions of the grid matching point CL 

Before the shock forms, i(t) is computed as described in Section 4. When the 
shock forms, the initial velocity of the shock v, is given by analytical continuation 
of one of the Rankine-Hugoniot relations, e.g., 

us(fshock) = lim awiax 
.- appx (t=t ) shock . (6.6) 

At t = tshock, the spatial derivatives of the quantities become infinite on c(, and, 
consequently, the previous relation does not have any numerical meaning. We then 
use for the computation of d(f,hock ) the following approximation: 

it fshock) = af;r (t = tshock - dr, x = cc). 

For t > &hock, c& which is now-the velocity of the shock, is computed by means of 
the mass conservation through the shock. Numerically speaking, the problem of 
infinite derivatives remains during a small interval of time dt. To avoid this 

FIG. 3. Density profiles and velocity fields for successive time steps starting with the initial condi- 
tions given by Eqs. (6.1k(6.5). (a) The fluid moves from left to right. The sticks at the bottom of the 
figures show the position of the matching point a(f); (b) Continuation of Fig. 3a. Note that the density 
and the velocity profiles become steeper and steeper. The matching point a(l) becomes closer and closer 
to the point of maximum gradient. (c) Continuation of Fig. 3b. Birth of the shock. When the shock is 
formed, the sticks show the position of the matching point a(t) which is now the shock position. From 
now, entropy is produced by the shock (see Fig. 4). (d) Continuation of Fig. 3c. The shock is now 
propagating toward the wall of the box. The calculation is stopped when the shock reaches the wall 
because the code is not able to handle the physics of the wall. 
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0 05 1 15 2 

X 

FIG. 4. Profiles of the entropy at successive time steps for all the calculation. Note that the entropy 
remains constant before the birth of the shock. 

problem we modify the density and the velocity values (only) at the time of the 
shock formation on the shock location by computing the values of p(cl+), P(C), 
U(CI+), and U(C) in such a way that the curvature of the above quantities at x = CI+ 
and X=M- vanishes. This numerical trick (which is the only one in the entire 
calculation) is, of course, not unique. There are a few other possibilities which we 
tried. All these tricks gave the same practical results. It is to be noticed that the 
artificial modification we introduce is just a change in the initial conditions of the 
calculation after the shock formation. 

TABLE I 

Quantity 
Domain 

of validity 
Lower bound 

of error 
Upper bound 

of error 

Aa’) 1 -- 
Aa-1 

da’) -- 
da-1 

1 

&jdx(a + ) ___- 
&+3x(a-) 

1 

- 1.5 x lo-l5 

t 4  &hock -1.0x lo-l4 

t G &hock -2.0x 1om2 

-2.0x 1om2 

+2.0x lo-t3 

f4.0 x lo-* 

f3.0 x 1o-2 

R.H. rel. on mass 

R.H. rel. on momentum 

R.H. rel. on energy 

-1.4x 10-l’ +1.4x 10-l’ 

-4.0x 10-s +2.0x 1o-9 

-1.0x 10-s +3.0x 1o-8 
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The entropy production is computed by means of the Rankine-Hugoniot relation 
relative to the non-accumulation of energy on the shock. The entropy profiles after 
the shock is formed are presented in Fig. 4. We do not present the entropy profiles 
for l< bhock because s remains constant in space and time. The gaps of the density 
p and the temperature T= K-P/~ as function of time are shown in Figs. 5a-b. 

In the presented calculation the total mass and the total energy have to be 

II “I’ I’/” I ”  ”  I “,‘I’7 

0.7 0.8 0.9 1 

Time 

0.6 0.7 0.8 09 1 

Time 

FIG. 5. (a) Plot of p(a+)/p(a-) as a function of time since the shock is formed (heavy line). The 
light line represents the same quantity obtained with a time step four times larger than in the previous 
case. The oscillations on the light line are due to the errors introduced in the Rankine-Hugoniot rela- 
tions by the time discretization. However, the stability of the shock together with the stability of the 
numerical scheme introduce a feedback compensating the errors. The small gap at I = r,hock is due to the 
trick used to handle the infinite derivatives of the quantities at the birth of the shock (see Section 6). 
(b) Plot of P(a’)/f’(a-) as a function of time since the shock is formed. 
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0 

I 1 I / I 4 
02 04 0.6 08 1 

Time 

02 04 0.6 08 1 

Time 

FIG. 6. (a) Relative error on the mass conservation as function of time. The trick which we used to 
handle the infinite derivatives at the birth of the shock is responsible of the growing of the error at this 
moment. (b) Relative error on the energy conservation as function of time. 

conserved. Figures 6a-b show the relative error in these conservation laws as a 
function of time. 

Table I present numerical error bounds on the matching errors when no shock 
is present and on the Rankine-Hugoniot conditions when shock is present. 

7. CONCLUSION 

We have presented a numerical technique that is able to solve Euler equations 
with a general equation of state with or without shock formation. No artificial 
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viscosity is used. The physical space is spanned by means of two moving numerical 
grids. When no shock is present, the equation of motion of the grids is computed 
in such a way that the matching point becomes the shock location when the shock 
forms. When the shock propagates, the equation of motion of the grid is given by 
one of the Rankine-Hugoniot relations. 

The numerical method is based on pseudo-spectral methods, each quantity being 
expanded in Chebychev polynomial series on both the numerical grids. This tech- 
nique allows numerical solutions with the great accuracy typical of spectral 
methods. In particular, it has been shown that the conservation laws are satisfied 
with a high accuracy depending essentially on the time step. Since the code does not 
use any kind of viscosity and since there is no spatial diffusion because of the 
spectral methods, the small amount of losses of conserved quantities is generated by 
the time discretisation. 

We have shown that the numerical technique allows easy treatment of matching 
conditions before and after the shock formation. However, a problem arises at the 
moment of the shock formation where spatial derivatives become infinite on the 
matching point and where the Rankine-Hugoniot relations cannot be numerically 
used to compute the initial velocity of the shock. We then used at this moment a 
numerical trick which is more or less satisfactory. 

The method can be generalized to multi-shock cases in a straightforward but 
cumbersome way. However, the direct generalization of the method to the multi- 
dimensional case can be performed only when the shape of the surface of the shock 
is not too complicated. 

A version of this code which takes into account the regularity properties of the 
scalar and the vector fields in the case of spherical geometry in now in progress. 
This version will be used to study ID gravitational collapse of the core of a star 
with the most complete equation of state. We recall that for this problem, high 
accuracy is needed because the energy emitted during the collapse of a star is only 
a few per thousand of the energy involved. This code will be the standard code 
which will be used to estimate the influence of the numercial viscosity present in the 
2D and 3D gravitational codes. 
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